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This paper discusses some aspects of the dynamical evolution of the system described by Dyson’s model for
the origin of metabolism. First, the mean number of mutation events required to observe the origin of metabo-
lism in the model is calculated. This number can span a large range depending upon the values of some critical
parameters. Second, the dynamics of the relaxation to equilibrium is investigated by computing the correlation
function of an on-off random function that defines the instantaneous state of the system. It was found that the
dynamics of the system is well described by a double or a stretched exponential relaxation.
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I. INTRODUCTION

In an earlier paper@1# we discussed a model for the origin
of metabolism that was introduced by Dyson@2#. One of the
hypotheses for the elaboration of the model is that cells came
first, enzymes second, and genes much later@2,3#. The primi-
tive cell is envisaged as an inert droplet containing a popu-
lation of polymer molecules composed of bound monomer
units analogous to the amino acids that make up modern
proteins. There is no Darwinian selection. Changes in the
polymer populations within the cell proceed by random dis-
crete steps of mutation, each mutation being a replacement
of one monomer by another at one of the sites in a polymer.
In a given population of polymers, the bound monomers are
either in active or in inactive states, the active monomers
being in sites where they contribute to the ability of a poly-
mer to act as a catalyst. The probability that a monomer
inserted by a fresh mutation is active is described by the
autocatalytic functionf(x), which only depends upon the
fractionx of active monomers already present in the popula-
tion. The monomers are assumed to belong to
11n51/f(0) equally abundant species and so the active
state is unique, whereas there aren possibilities for the in-
active states. Modeled in this way, the essential feature for
the origin of metabolism lies in the transition that occurs for
the total population of the droplet from the disorganized or
deadstate to the organized oralive state@1,2#. In this con-
text, the terms alive and dead mean the presence and absence
of metabolic organization.

We showed in Ref.@1# that the concept of a spin glass as
a model for the transition to biological order is applicable to
Dyson’s model for the origin of metabolism. Because the
theoretical framework provided by the random energy model
@4# can be employed to study the problem, the equilibrium
properties for the model can be completely determined. For
instance, the droplet cell, as described above, was character-

ized in terms of the features of a rugged potential energy
landscape in which the monomers strongly interact with each
other. It was shown that the law of inheritance from parent to
daughter given by the autocatalytic functionf(x) is com-
pletely governed by the nature of interactions between
monomers. As a consequence, the diversity of the population
of monomers and the precision of the polymerizing catalysts
were found to be intimately related.

Our main interest in this paper is to study the dynamical
evolution of the droplet population with respect to mutation
events. To do this, we consider that the droplet containsN
monomers and assume that its configuration is solely speci-
fied by the numberi50,1, . . . ,N of monomers active after
t mutations. In what follows, for convenience, the number
t of mutation events will often be called the timet. The
variation of i (t) corresponds to a discrete one-step Markov
processi→ i11,i→ i21; i.e., the population in the droplet
does a biased one-dimensional random walk. It follows that
the daughter population and its ancestors are not correlated.
The probability of findingi active monomers in the popula-
tion after t mutation events is denoted byP( i ,t), and the
time evolution of the population is descibed by the master
equation

]P~ i ,t !

]t
5(

j50

N

v i j P~ j ,t !, ~1!

wherev i j are the matrix elements of the (N11)3(N11)
nonsymmetric matrix of transition probabilities per unit of
mutation. They obey detailed balance:

v i , j Peq~ i !5v j ,iPeq~ j !, ~2!

where Peq( i ) is the equilibrium probability of findingi
monomers active in the system. The transition probabilities
are defined as@2#

i→ i11: v i ,i115~N2 i !f~ i /N!, v21,050,

i21← i→ i11: v i ,i52v i ,i112v i ,i21, ~3!
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i→ i21: v i ,i215 i @12f~ i /N!#, v0,2150.

f(x) is the autocatalytic probability that the mutated unit is
active in a droplet that already containsi active monomers
and is defined, as before@1#, as being of Glauber type:

f~x!5
1

11exp@Ea~x!/kBT#
5

1

11exp~A2Bx!
~4!

with x5 i /N being the fraction of active monomers,Ea(x)
the activation energy for the transition between two configu-
rations i→ i11, andkBT the thermal energy. The constants
A andB are given by@1#

A5
4zJ22«

kBT
and B5

8zJ

kBT
, ~5!

where « is the energy gained~lost! for a monomer to be
active~inactive!, zJ is the interaction energy between mono-
mers, andz is the average coordination number.

The outline of the paper is as follows. In Sec. II, the
characteristics for systems dead, symmetric, and alive are
defined from the equilibrium distribution. In Sec. III a first
passage time formalism is used to determine how long it
takes for a population to switch spontaneously from the dis-
organized to the organized state for each of the systems.
Section IV is devoted to a study of the relaxation dynamics
in the three systems defined in Sec. II. This is done by nu-
merically solving the master equation that describes the time
evolution of the population and by computing the autocorre-
lation function of an arbitrary random physical quantity. The
paper ends with concluding remarks in Sec. V.

II. EQUILIBRIUM DISTRIBUTION

The stationary solution of Eq.~1! with the transition rates
~3! is given by

Peq~ i !5
1

Z
expH 2(

j51

i

lnS v j , j21

v j , j11
D J , ~6!

whereZ is the partition function defined as

Z5(
i51

N

expH 2(
j51

i

lnS v j , j21

v j , j11
D J . ~7!

The equilibrium distribution is the Boltzmann distribu-
tion:

Peq~x!;e2NU~x! ~8!

whereU(x) is the potential of the free energy of the droplet
containingN interacting monomers. It has been shown@1#
~see also Appendix B! that the potentialU(x) can be written
as

U~x!5xln~x!1~12x!ln~12x!1Ax2
B

2
x2. ~9!

The equilibrium distribution, calculated from Eq.~6!, and
the potentialU(x) are displayed in Figs. 1~a! and 1~b! for
some selected systems. It was shown in Ref.@1# that for

A.Ac52 andB.Bc54 the potentialU(x) is bistable and
exhibits two stable minima atx5a ~disorganized state! and
at x5g ~organized state!, and an unstable maximum at
x5b with a,b,g ~see Tables I and II!. The organized
state is called ‘‘alive’’ because most monomers are active,
and together they maintain the catalytic processes which
keep them active. The disorganized state is called ‘‘dead’’
since most monomers are inactive and do not work in the
same collaborative fashion. Accordingly, it is possible to
consider three special cases for systems with respect to the
occurrence of the order-disorder transition

~i! Dead system. In this system,U(x) has only a stable
minimum in the disorganized state and the potential barrier
coincides with the organized state such thata,b5g. Be-
cause of the absence of the stable organized state this situa-
tion is called a dead system. Numerical analysis shows that
the variation of the height of the potential barrier,
D5U(b)2U(a), with the diversityn can be written as

D.0.0174ne , ne>0, ~10!

wherene5un2ncu plays the role of an effective diversity in
the system. The critical diversitync is related toAc by
nc5exp$Ac%.

~ii ! Alive system. This case is the opposite of the dead
system. The unique minimum ofU(x) is actually in the or-
ganized state and the unstable barrier top coincides with the
disorganized state such thata5b,g. As above, this situa-
tion is called an alive system because of the absence of a

FIG. 1. ~a! Equilibrium distributionPeq(x) calculated from Eq.
~6! with n510 andN5100 for the three systems symmetric (S),
dead (D), and alive (A). The corresponding values for the pair of
parameters (A,B) are (2.3,4.6), (2.3,4.49), and (2.3,4.85), respec-
tively. ~b! The shapes of the potentialU(x) corresponding to the
above systems.
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stable disorganized state. Then dependence for the barrier
height,D85U(b)2U(g), reads

D8.0.0123ne
1.8, ne>0. ~11!

~iii ! Symmetric system. Between the two extreme situa-
tions described above there is a third case called a symmetric
system, characterized by a double-well structure forU(x)
with the top of the barrier atb51/2 and two equal wells at
a andg such thata512g andB52A. Then dependence
for the barriers,D85D, is given by

D.0.0097ne , ne>0. ~12!

The phase diagram in the space$e,zJ% representing the
composition of the population shows a typical cusp for
which the points inside the cusp at (0,1

2! correspond to the
transition region~see Fig. 1 of Ref.@1#!. For all systems the
barrier heightsD andD8 cancel at the cuspne50, where the
bistability of U(x) vanishes. Beyond the cusp, bothD and
D8 increase with the diversity and are, by definition, equal to
zero in the alive and dead systems, respectively. Apart from
the symmetric system, the organized and disorganized states
are not mirror images of each other and so there are differ-
ences betweenD andD8. This also indicates that any dy-
namical evolution will be intrinsically biased in these sys-
tems. The bias, controlled by either the energy« or the

differenceD82D, is negative, zero, and positive for the
dead, symmetric, and alive systems, respectively.

III. MEAN NUMBER OF MUTATION EVENTS

We want to determine the mean numbert of mutation
events after which a system starting out in the disordered
dead state reaches an ordered state for the first time. In gen-
eral, the population of monomers will spend a long time in
either the dead or alive states, making small random fluctua-
tions around the stable equilibrium. There may, however, be
fluctuations which take the whole population of the droplet
over the top of the barrier from one stable equilibrium to the
other. Thus the origin of metabolism comes about when a
system in a dead state makes such a transition to the alive
state.t is the mean number of mutation events required to
observe this transtion and is exactly the mean first passage
~nondimensional! time for a system starting out ati5aN to
reach the pointi5gN.

Following the first passage time approach and by impos-
ing reflecting and absorbing boundary conditions ati50 and
i5gN, respectively, one can show that the mean number of
mutation events can be obtained from the relation

t5 (
i5aN

gN21
1

v i ,i11Peq~ i !
(
j51

i

Peq~ j !. ~13!

The nonfactorization of transition ratesv i , j precludes an
analytical expression fort. However, more information can
be gained from the asymptotic approximation fort obtained
in the continuum limit of Eq.~13!. This has been done in
Appendix C and the numerical results can be summarized as
(ne.0)

t.H 8.16N1/6exp~ND!, dead

24.34exp~ND!, symmetric

13.79ne
20.265N1/4, alive.

~14!

According to this, the behavior oft versus the diversity is
expected to be dramatically different between the alive sys-
tem and the two others.

TABLE I. Some selected values forA andB in the three systems alive, symmetric, and dead.A is related
to the numbern11 of monomer species~or the degeneracy of a given monomer! by the relation
A5 ln(n). a andg are the locations of the disorganized and organized states, respectively, andb is the barrier
position. For the symmetric system,B52A andb50.5.

Diversity Alive Symmetric Dead
n B a5b g a g B a b5g

7.389 4 0.5 0.5 0.5 0.5 4 0.5 0.5
8 4.1851 0.3947 0.7047 0.3333 0.6667 4.1414 0.3190 0.5924
10 4.8524 0.2904 0.8744 0.2029 0.7971 4.4936 0.1906 0.6657
12 5.5516 0.2358 0.9385 0.1483 0.8517 4.7603 0.1391 0.6998
14 6.2639 0.1994 0.9686 0.1169 0.8831 4.9771 0.1098 0.7215
16 6.9831 0.1732 0.9836 0.0964 0.9036 5.1601 0.0908 0.7371
18 7.7066 0.1532 0.9914 0.0819 0.9181 5.3186 0.0773 0.7490
19 8.0693 0.1400 0.9938 0.0761 0.9239 5.3904 0.0720 0.7500
20 8.4329 0.1375 0.9955 0.0711 0.9289 5.4584 0.0674 0.7585

TABLE II. Values of potential barriers as a function ofn, with
D5U(b)2U(a) andD85U(b)2U(g).

Diversity Alive Symmetric Dead
n D8 D D

7.389 0.0 0.0 0.0
8.0 0.4561831022 0.1129331022 0.2695531022

10.0 0.8113031021 0.1449531021 0.2980831021

12.0 0.22926 0.3396731021 0.6602831021

14.0 0.42384 0.5487831021 0.10344
16.0 0.64906 0.7558831021 0.13972
18.0 0.89541 0.9549731021 0.17417
19.0 0.10245310 0.10508 0.19069
20.0 0.11569310 0.11441 0.20663
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For dead and symmetric systems,t grows exponentially
with the effective diversity and the size of the population.
Numerical analysis confirms these facts, as shown in Fig. 2,
which displays a semilogarithmic plot oft versusne . The
plot for N5100 was obtained using the exact formula in Eq.
~13! and the lines through the data correspond to the approxi-
mation of Eq.~14!. This exponential growth fort is very
similar to the period of a Poincare´ cycle and corresponds to
the so-called Levinthal time for protein folding@5#. On pro-
ceeding by random search among all possible configurations,
the system finds the metabolic organized state with difficulty,
so that the mean number of mutations required to observe
that transition is immense. It follows that the origin of me-
tabolism is exponentially improbable in such systems.

For the alive system, on the other hand,t slowly de-
creases withne , as depicted in Fig. 2, since the probability
of choosing an active monomer among the others goes down
with the chemical diversity as 1/ne . The number of muta-
tions required to find the organized state is dramatically re-
duced and the origin of metabolism is now a quite frequent
event. The system explores a very small number of possible
configurations in order to find the alive state. At first sight, it
seems that the effective diversity or the total number of pos-
sible configurations is exponentially reduced, so making the
search more efficient and less long. This stems essentially
from the barrierless downhill structure of the potential
U(x), which admits a unique stable minimum in the alive
state. It is to be noted that theN1/4 dependence oft for the
alive system suggests thatt keeps comparable values for
population sizes ranging over about three order of magni-
tude. For instance,

t~ne ,N!

t~ne ,N5102!
51, 1.78,3.16 forN5102, 103, 104.

The variation of both the diversity and the size of the popu-
lation of monomers has little effect on the origin of metabo-

lism for the alive system. This robustness of the process
against variation or fluctuations ofne andN is not seen in the
symmetric and dead systems because of the finite values of
D.

It is interesting to determine the effect of a variation of
the potential ont. Specifically, how is the mean numbert
~or the mean time! modified when the potentialU(x) is adia-
batically changed from a dead to an alive state? For an adia-
batic change, we require that the time scale 1/V for the
variation of the shape ofU(x) is much larger than the char-
acteristic timet rx for the relaxation to equilibrium for the
system; i.e.,Vt rx!1. Such changes can take place due ei-
ther to the influence of other catalysts as in the enzymatic
reaction or to certain external influences that could occur
during long periods of the evolution. The effect of switching
the potential shape from that for a dead system to that for an
alive one is to increase both the energy« gained for making
a monomer active and the interaction energyzJ between
monomers. Thus the system goes from a state of low stress
to a more constrained one. To work out how such changes
modify t, we have computed the mean numbert as a func-
tion of the barrier heightD for a fixed diversityn519 and a
populationN5100. To maintain the value ofn @5exp(A)#
constant when changing the potential, it is necessary to ad-
just the values of the control energies« andzJ. The value of
D allows us to characterize the variation of the potential and
it takes the values ofD50, 0.114, and 0.207 in the alive,
symmetric, and dead systems, respectively. The results are
illustrated in Fig. 3, from which it can be seen that there is an
exponential drop in the value oft when the potential barrier
goes down to zero in the alive configuration. The solid line
through the numerical data is obtained from Eq.~13! and is

t5taexp~ND!, ~15!

whereta522.1 and is the mean number of mutations in the
alive system. In connection with the folding time for a pro-
tein, Zwanzig et al. @6#, using a similar approach, have
shown that the Levinthal time can be considerably reduced if

FIG. 2. Mean number of mutation eventst as a function of the
effective diversityne for the symmetric (S), dead (D), and alive
(A) systems. The data~circles! are obtained from the computation
of the formula in Eq.~13! for a population of sizeN5100. The
solid lines through the data correspond to the asymptotic expres-
sions of Eq.~14!.

FIG. 3. Mean number of mutation eventst as a function of
barrier heightD for n519 andN5100. The solid line through the
data~circles! corresponds to Eq.~15!.
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there is an energy penalty for making an incorrect bond, the
correct bond meaning the native state of the amino acid.
Here,2D plays the role of that energy penalty andt can be
regarded as the dimensionless folding time. The real time is
obtained by multiplyingt by the characteristic rate constant
to interconvert one state of the amino acid to another.

It is also possible to ask the real time that it takes for a
population originally in the dead state to switch spontane-
ously to an alive state. To answer this we need to determine
the average time interval between mutation events at each
site. Unfortunately, it is difficult to obtain a reasonable esti-
mate of a value for this time, which has certainly changed in
the course of evolution.

IV. RELAXATION TO EQUILIBRIUM

For the purpose of the relaxation dynamics we need to
calculate the Green’s functionG( i ,tu j ) of Eq. ~1!, subject to
the conditions

G~ i ,tu j !5d i , j at t50, lim
t→`

G~ i ,tu j !5Peq~ i !,; j .

~16!

The master equation in Eq.~1! can be symmetrized by mak-
ing the transformation@7,8#

f ~ i ,t !5@Peq~ i !#
21/2P~ i ,t ! ~17!

to give

] f ~ i ,t !

]t
5(

j50

N

Hi j f ~ j ,t !, Hi j5Av i jv j i , ~18!

where H is an (N11)3(N11) symmetric matrix. The
problem is now reduced to computing the eigenvaluesln
and eigenvectorscn of H such that

Hcn52lncn ~n50, . . . ,N!, ~19!

where cn is the normalized column vector with elements
„cn(0),cn(1), . . . ,cn(N)…. The equilibrium condition re-
quires that the spectrum ofH contains at least a zero eigen-
value, l050, and the corresponding eigenvectorc0 is re-
lated to the equilibrium distribution by

Peq~ i !5uc0~ i !u2. ~20!

By using the inverse tranformation of Eq.~17!, it is possible
to deduce that the Green’s function, or the conditional prob-
ability, for Eq. ~1! is given by

G~ i ,tu j !5
c0~ i !

c0~ j !
(
n50

N

cn~ i !cn~ j !e
2lnt. ~21!

Therefore the time correlation function for any observable
O can be computed in terms of the Green’s function from the
relation

^O~ t !O~0!&5 (
i , j50

N

OiG~ i ,tu j !OjPeq~ j !

5 (
n50

N S (
i50

N

Oic0~ i !cn~ i !D 2e2lnt. ~22!

The correlation function is no longer normalized since
from Eq. ~16!

lim
t→0

^O~ t !O~0!&5^O2& and lim
t→`

^O~ t !O~0!&5^O&2,

~23!

where the average is defined as^g&5( ig( i )P eq( i ), and
Peq( i ) is the equilibrium distribution defined above. We de-
fine the normalized correlation functionC(t) by

C~ t !5
^O~ t !O~0!&2^O&2

^O2&2^O&2
~24!

and the corresponding relaxation timet rx by

t rx5E
0

`

C~ t !dt. ~25!

Following Szaboet al. @9#, the relaxation time associated
with the observableO can be written in the continuum limit
as

t rx5
1

^dO2&E0
1 dx

D~x!Peq~x! F E
x

1

dO~y!Peq~y!dyG2,
~26!

where D(x) is the x-dependent diffusion coefficient and
dO5O2^O& describes the fluctuations around the mean
value ofO.

In Appendix B it is shown how in the continuum limit for
the master equation a Smoluchowski equation is obtained. It
is instructive to consider the qualitative properties of this
equation to gain insight into the correlation function. The
structure of the diffusion equation suggests a double expo-
nential relaxation, since the time evolution of the probability
distribution consists of two terms, a drift term
]x@DP(]xV)#, which causes the distribution function to
move toward the nearest local minimum with its width con-
trolled by the thermal energy, and a diffusion term
]xD(]xP), which describes the probability for the whole
system to jump from a metastable minimum to a distant glo-
bal minimum. Roughly speaking, relaxation timests andt l
can be associated with the drift and the diffusion terms, re-
spectively, in such a way that the total correlation function
reads

C~ t !5~12c!expH 2
t

ts
J 1cexpH 2

t

t l
J

with t rx5~12c!ts1ct l , ~27!

wherets andt l are the short and long relaxation times, re-
spectively, and the constantc quantifies the importance of
t l to the total relaxation.

Such a relaxation dynamics can be understood as follows.
When the system is perturbed such that the initial distribu-
tion is centered in the neighborhood of one local minimum,
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the drift term will cause the distribution function to relax on
the time scalets to the time-dependent distribution centered
around that minimum. On the time scalet l ~generally,
t l.ts) the diffusion will asymptotically move the distribu-
tion to its final time-independent form given byPeq(x). Ac-
cordingly, one generally expects a nonexponential relaxation
dynamics for a diffusion process on a potential surface. It is
shown in Appendix A how to calculatets , t l , andc for the
double exponential approximation. In particular, it is found
thatt l51/l1 , with l1 being the smallest nonzero eigenvalue
of the matrixH. The single exponential relaxation appears as
an extremum limit whents!t l . Nevertheless, it is to be
noted that a description in terms of two relaxation times for
C(t) is valid only when the drift term is simple enough to be
described by a single time scale. For more complex potential
surfaces that generate a distribution of time scales, the relax-
ation dynamics is multiexponential and can be represented
by a stretched exponential of the form

C~ t !5expH 2S tt0D
mJ with t rx5GS 1m 11D t0 , ~28!

wheret rx is the number of mutation events needed to ob-
serve the relaxation of the system to equilibrium.

To study the relaxation dynamics further, we simplify the
problem by dividing every configuration of the droplet cell
described by the potentialU( i /N) into two subspaces, dead
(D) and alive (A). For any configuration havingi active
monomers the droplet will be seen to be in the stateD for
i,bN and in the stateA for i.bN, whereb is the position
of the potential barrier. Each state of the droplet has an as-
sociated observablem(t), which is defined by the step func-
tion

m~ t !5u@bN2 i ~ t !#5H 1, i ~ t !,bN

0, i ~ t !.bN.
~29!

m(t), which defines the instantaneous state of the droplet,
could correspond to a physical quantity such as, for instance,
the polarization, magnetization, or reactivity of the system,
or its ability to perform certain functions. It is also similar to
the simple output functions used in neural networks. From
that viewpoint it would be interesting to consider other forms
for m(t), such asm(t)5f„x(t)…. Such questions will be
addressed in future work. Here we focus on the simple ver-
sion of the response functionm(t).

By substitutingO bym in Eq. ~22!, we obtain the number
correlation function:

^m~ t !m~0!&5 (
i , j50

bN

G~ i ,tu j !Peq~ j !. ~30!

The quantity characteristic of the relaxation to equilib-
rium is then the normalized autocorrelation functionC(t)
given by

C~ t !5

(
i , j50

bN

$G~ i ,tu j !2G~ i ,`u j !%Peq~ j !

(
i , j50

bN

$G~ i ,0u j !2G~ i ,`u j !%Peq~ j !

. ~31!

By usingdm in Eq. ~26!, the relaxation time for the observ-
ablem can be written as

t rx5
K

11KE0
b eV~x!dx

ZDD~x! F E
0

x

e2V~y!dyG2
1

1

11KEb

1eV~x!dx

ZAD~x! F E
x

1

e2V~y!dyG2 ~32!

as previously given by Schultenet al. @10#, with V(x) and
D(x) defined in Eqs.~B5! and ~B9!, respectively. To obtain
Eq. ~32! we have introduced the equilibrium constant
K5ZA /ZD , where

ZD5E
0

b

e2V~x!dx and ZA5E
b

1

e2V~x!dx. ~33!

The simplest case to consider is the symmetric system for
which K51. For D50 the numerical computation of inte-
grals in Eq. ~32! leads tot rx.1.02N1/2 for the relaxation
time at the cusp. In proceeding as in Appendix C it can be
shown that whenND*1 the relaxation time for the symmet-
ric system reduces to

t rx5E
0

b eV~x!dx

ZDD~x! F E
0

x

e2V~y!dyG2. 1

2
t, ~34!

wheret is the mean first passage time as calculated in the
previous section. For the dead and alive systems the equilib-
rium constant is, respectively,K}e2ND and K}eND8, and
the approximation procedure outlined in Appendix C can
also be used to estimate the relaxation time. We report below
the numerical analysis results obtained from Eq.~32! in the
limit of large N and above the cusp. We have forne>0.61

t rx.H 14.7ne
20.37exp$2ne

20.75%N0.28, dead

12.3exp~ND!, symmetric

16.9ne
20.48exp$2ne

20.75%N0.26, alive.

~35!

These expressions provide most of the information we need
to know about the relaxation time regardless of the nature of
the relaxation dynamics. To go further, the correlation func-
tions defined by Eq.~31! were computed for the three sys-
tems~dead, alive, and symmetric! with a population size of
monomers ofN5100. For all the functionsC(t), the fits
obtained using the double exponential form of Eq.~27! were
essentially exact witht l.l1 for all systems.

At the cuspne50 the potential has a unique global mini-
mum atx51/2 andt l as defined above does not exist. How-
ever, the potential is quite flat around this minimum point
since all derivatives ofU(x) of order smaller than 4 are
equal to zero atx51/2. The potential can be roughly subdi-
vided into a central region, in which there is a quasifree
diffusion, separating two regions at the edges where the drift
term dominates the dynamics. In this respect,t l can be rein-
terpreted as the equilibration time of the probability distribu-
tion within the flat region of the potential. The relaxation
time t rx.11.55, obtained for this case, is very close to the
theoretical valuet rx511.592.
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Out of the cusp, the major effect of the double well struc-
ture of the potential is to increaset l . In the symmetric sys-
tem, the relaxation time grows exponentially withne slowing
down the relaxation. This is exhibited in Fig. 2 and in Table
III since t rx.t/251/l1 . For ne,2.6 the relaxation is still
double exponential since the barrier height isND&1 and the
potential is little modified from its form at the cusp. For
ne>2.6 the relaxation dynamics is reduced to a single expo-
nential with t rx51/l1 because the ratiots /t l}exp(2ND)
tends to zero whenne gets larger, i.e., forND@1. In this
limit the dynamics of the system can be approximated by a
phenomenological first order kinetic rate equation that leads
to an exponential relaxation to equilibrium@10#.

The situation is somewhat different in the dead and alive
systems, where the barrier coalesces with one of the wells in
the potential. For the two systems, the ratiot l /ts of relax-
ation times slightly increases withne , falling between
14.47 and 27 for the alive system and between 14.76 and
18.8 for the dead one. The typical value for the constantc is
close toc.0.83 (c.0.785) for the alive~dead! system, in-
dicating that about 83% (78.5%) of the overall relaxation is
dominated by the long time relaxation which originates from
the diffusion. Therefore the dynamics of the system are still

well described by the double exponential relaxation. This is
illustrated in Fig. 4, which shows the variation oft rx versus
ne obtained by using a double exponential form for the re-
laxation and the forms of Eq.~35!. In contrast to the sym-
metric system,t rx initially increases withne and then shows
a power law falloff. Forne,1 the potential is little modified
from its form at the cusp, and all additional perturbative
features cause an increase of the relaxation time. Forne@1
the potential is completely different and there is a rapid re-
laxation to the unique and deep stable minimum of the sys-
tem. The relaxation is speeded up withne because the overall
gradient toward the bottom of the potential well increases
with ne . The difference in the relaxation time between the
two systems, alive and dead, is due to the differentn depen-
dence of the potential gradient in each system.

For illustrative purposes, the stretched exponential of Eq.
~28! was also used as a fitting function for the relaxation.
Good fits were obtained for all curves ofC(t). As depicted
in Fig. 5, the exponentm is comprised between 0.75 and
0.84 for both dead and alive systems while it goes from
m.0.8 tom.1 in the symmetric system. Note that the val-
ues ofm in the alive system are greater than in the dead
system indicating that the relaxation is more rapid in the
alive system than in the dead one.

V. CONCLUDING REMARKS

In this paper we have computed the mean number of mu-
tation eventst required to observe the origin of metabolism,
which is characterized as the transition from the dead state to
the alive state in Dyson’s model. The mean number was
found to be very similar to the Levinthal time for protein
folding. In particular, for a given population of monomers,
t grows exponentially with the effective diversity in the dead
and symmetric systems while it decreases for the alive sys-
tem. In the latter case, it appears as if most of the degrees of
freedom of the system are ‘‘frozen,’’ allowing a very few of
them to control the fate of the whole system. This is illus-
trated by the exponential falloff to a nonzero constant oft
when, at fixedn andN, the system is modified from the dead

FIG. 4. The relaxation timet rx versusne for the alive~circles
and solid line! and dead~asterisks and dashed line! systems. The
points are obtained from the double exponential fits to the correla-
tion function ~see text!, and the lines represent the approximations
in Eq. ~35!.

FIG. 5. The exponentm versusne for the systems symmetric
~circles and dashed line!, dead~asterisks!, and alive~circles!.

TABLE III. Values ofl1 as a function ofn. The long relaxation
time is given ast l51/l1 .

Diversity Alive Symmetric Dead

7.389 0.069182 0.069182 0.069182
8.0 0.048387 0.049006 0.053181
10.0 0.037772 0.011979 0.033084
12.0 0.045251 0.002132 0.036190
14.0 0.050414 0.000307 0.039366
16.0 0.054348 0.000042 0.041658
18.0 0.057490 0.000006 0.043307
20.0 0.060010 0.000001 0.044643
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configuration to the alive one by adiabatically tuning the
control parameters of the potential for the system. This op-
eration removes the system from the dead state of low stress
into the more constrained alive state by simultaneously en-
hancing the energy gained for activating a monomer and the
interaction energy between monomers. It is to be noted that
these features are very reminiscent of a number of other
problems, including the folding problem, for example, in
which the analogues of the dead and alive states are the
unfolded and folded states, respectively. Bryngelson and
Wolynes have used the same type of potential of free energy
U(x) for studying protein folding within the framework of
the random energy model@11#. More generally, this analogy
can apply to any problem of a phase transition that admits a
two-states description.

We have also examined the relaxation dynamics of the
system by computing the correlation function of a random
and binary response function that defines the instantaneous
state of the system. It was found that the relaxation to equi-
librium is well described by either a double exponential or a
stretched exponential. Such dynamical studies of the random
energy model@12,13# have already been perfomed in other
contexts by, for example, Shakhnovich and Gutin@14# and
Fernandez@15#. In these studies the transition rates were fac-
torizable and analytic solutions to the master equation were
obtained. The equilibrium correlation functions displayed
various forms, including power law and stretched exponen-
tial relaxation. In our problem the transition rates are no
longer factorizable and the master equation was solved nu-
merically. Even for a simple two-state response function the
relaxation dynamics for the balance of the populations is not
necessarily exponential but depends on the system consid-
ered. Roughly speaking, the scenario for the relaxation pro-
ceeds in two steps. First, there is a rapid relaxation that
drives the system to a metastable state of low~high! meta-
bolic activity for the alive~dead! system. It is followed by a
second step of slow relaxation, essentially controlled by dif-
fusion, that takes the system from the unstable state and
slides it down the slope into the global minimum. The ratio
of the slow to the fast relaxation times is about 17.2 and
21.2 for the dead and alive systems, respectively. That ratio
of relaxation times becomes so large in the symmetric sys-
tem that the slowing down relaxation is reduced to a single
exponential, since it is dominated by the time of jumping
from one minimum to the other. A similar image for the
relaxation dynamics was pointed out by Pericoet al. @16#,
who also noted the robustness of the double exponential ap-
proximation to describe the correlation function. Finally, it
would be useful and instructive to study the relaxation dy-
namics through an intrinsic function of the system, the auto-
catalytic probability, for example. Such work will be re-
ported elsewhere.
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APPENDIX A: DOUBLE EXPONENTIAL
APPROXIMATION

From Eq.~22! the normalized correlation function can be
written as

C~ t !5

(
n50

N S (
i50

N

Oic0~ i !cn~ i !D 2e2lnt2^O&2

^O2&2^O&2

5 (
n51

N

cne
2lnt, ~A1!

where the weightcn associated with the eigenvalueln is
defined as

cn5
1

^O2&2^O&2 S (i50

N

Oic0~ i !cn~ i !D 2, (
n51

N

cn51.

~A2!

When the eigenvalues of the matrixH are ordered as
l050,l1,l2,•••, Eq. ~A1! can be seen as a perturba-
tion expansion for the correlation function. The zeroth order
of perturbation consists in keeping only the first term of the
summation. This gives a single exponential with decay
1/l1 that legitimately describes the long time relaxation of
C(t). The remaining higher orders of the expansion contrib-
ute with different weightscn to the short time relaxation,
which is essentially multiexponential. In the first order of
perturbation, the short time relaxation can also be approxi-
mated by a single exponential with a rescaled decay time.
This leads to the double exponential approximation for
C(t) as follows:

C~ t !.~12c1!e
2lst1c1e

2l1t. ~A3!

To derive Eq.~A3! we have usedC(0)51. The short time
eigenvaluels (>l2) is obtained by requiring that the relax-
ation time calculated from Eq.~A3! be exact, i.e.,

t rx5
12c1

ls
1
c1
l1

5 (
n51

N
cn
ln

, ~A4!

to give

1

ls
5 (

n52

N
1

ln
g~n!5 K 1ln

L ~A5!

with the distributiong(n) defined as

g~n!5
cn

12c1
, n>2. ~A6!

It follows that the double exponential approximation will
be more accurate when the ratiog(n)/ln falls off rapidly
with n. Thus, the summation in Eq.~A5! can be truncated to
a certain order. In the first order approximation, for instance,
this gives

ls.
12c1
c2

l2.l2 . ~A7!
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APPENDIX B: CONTINUOUS LIMIT
FOR THE MASTER EQUATION

The master equation Eq.~1! can be rewritten as

]P~x,t !

]t
5v1~x2e!P~x2e,t !1v2~x1e!P~x1e,t !

2@v1~x!1v2~x!#P~x,t !, ~B1!

wherev6(x) @corresponding tov i ,i61 of Eq. ~3!# denotes
the transition rates forx→x6e, respectively, withx being
the fraction of the active monomer ande51/N. We define
the diffusion coefficientD(x) and the forcef (x) for the
mutation events such that

v1~x!5
D~x!

e2
exp$2 1

2 e f ~x!%,

v2~x!5
D~x!

e2
exp$1 1

2 e f ~x!%. ~B2!

The first order Taylor expansion in Eq.~B2! leads to

]P~x,t !

]t
5

1

2e
@D~x1e! f ~x1e!P~x1e,t !2D~x2e!

3 f ~x2e!P~x2e,t !#1
1

e2
@D~x1e!P~x1e,t !

22D~x!P~x,t !1D~x2e!P~x2e,t !#. ~B3!

In the limit of smalle, Eq. ~B1! becomes

]P~x,t !

]t
5

]

]x
@D~x! f ~x!P~x,t !#1

]2

]x2
@D~x!P~x,t !#

5
]

]x HD~x!
]V~x!

]x
1D~x!

]

]x J P~x,t !. ~B4!

Defining the potentialV(x) by

V~x!5NU~x!1 ln@D~x!#, ~B5!

we obtain the Smoluchowski equation:

]P~x,t !

]t
5

]

]x HD~x!e2V~x!
]

]x
@eV~x!P~x,t !#J ~B6!

with

D~x!5e2Av2~x!v1~x! ~B7!

and

U~x!5eEx

f ~y!dy5Ex

lnS v2~y!

v1~y! Ddy. ~B8!

Thus, for the rates given by Eq.~3!, the expression for the
diffusion coefficient is

D~x!5
$x~12x!f~x!@12f~x!#%1/2

N
, ~B9!

and for the potential,

U~x!5xln~x!1~12x!ln~12x!1Ax2
B

2
x2. ~B10!

APPENDIX C: MEAN FIRST PASSAGE TIME

The continuous version of Eq.~13! can be written as

t5E
a

g dx

D~x!e2V~x!E
0

x

e2V~y!dy5E
a

g

eNU~x!dxE
0

x

e2V~y!dy,

~C1!

where the potentialV(x) is defined by Eq.~B5! andD(x)
andU(x) are given by Eq.~B9! and Eq.~B10!, respectively.
Since we are concerned only by values ofD(x) and its de-
rivatives calculated at points whereU8(x)50 ~the prime de-
noting the derivative with respect tox) so thatf(x)5x, the
expression forD(x) then simplifies to

D~x!5
x~12x!

N
. ~C2!

To estimate the mean first passage time we use the well
known procedure that approximatesU(x) andV(x) around
the local minimum and maximum. The asymptotic approxi-
mations we derive are valid only in the limit of largeN and
beyond the cusp,ne.1. We consider three situations de-
pending upon the shape ofU(x).

1. Symmetric system

The potentialU(x) has a double well structure with two
equal minima at x5a and x5g and a barrier at
x5b51/2. Consider first the integral

I ~x!5E
0

x

e2V~y!dy. ~C3!

Since I (x) is small for x,a anda,x,g, it can be well
approximated by its value aroundx5a. Using a quadratic
approximation aroundx5a for V(x),

V~x!.V~a!1V8~a!~x2a!1 1
2 V9~a!~x2a!2, ~C4!

with

V8~a!5
122a

a~12a!
. 0 ~C5!

and

V9~a!5NU9~a!H 12
122a~12a!

Na~12a!@12Ba~12a!# J ,
~C6!

we can estimateI (x) as

I ~x!.u~x2a!e2V~a!E
2`

`

e2V8~a!y2V9~a!y2/2dy

5S 2p

V9~a! D
1/2

e2V~a!1@V82~a!/2V9~a!#u~x2a!, ~C7!
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whereu() is the Heaviside function. To calculate the remain-
ing integral in Eq.~C1! we expandU(x) aroundx5b in the
same way as above:

U~x!.U~b!2
1

2
uU9~b!u~x2b!2. ~C8!

In the limit N@1, the mean first passage time is given by

t.
2pexp$~122a!2/2Na~12a!@12Ba~12a!#%

A@12Ba~12a!#@Bb~12b!21#

3Fb~12b!

a~12a!G
1/2

eND. ~C9!

2. Dead system

The top of the barrier coincides with the potential well at
x5b5g.1/2. Equation~C7! is still a good approximation
for I (x) while V(x) is now expanded locally aroundx5g by
a cubic potential:

U~x!.U~g!1
1

3!
U-~g!~x2g!3 ~C10!

with

U-~g!5
2g21

g2~12g!2
. 0. ~C11!

The remaining integral in Eq.~C1! can be estimated as

E
a

g

eNU~x!dx.eNU~g!E
0

`

e2NU-~g!y3/3!dy

5GS 43D S 6

NU-~g! D
1/3

eNU~g!. ~C12!

After calculation, we find

t.GS 43D
3H 2pexp$~122a!2/Na~12a!@12Ba~12a!#%

a~12a!@12Ba~12a!# J 1/2
3H 6g2~12g2!

2g21 J 1/3N1/6eND. ~C13!

3. Alive system

In this case, the top of the barrier coincides with the well
at x5a5b,1/2 where bothU8(x)5U9(x)50. Then Eq.
~C7! is no longer valid. However,V(x) can be approximated
aroundx5a as

V~x!.V~a!1V8~a!~x2a!1
1

2!
V9~a!~x2a!2

1
1

3!
V-~a!~x2a!3. ~C14!

The integralI (x) can then be written as

I ~x!.e2V~a!E
0

x

dye2V8~a!~y2a!2~1/2!!V9~a!~y2a!22~1/3!!V-~a!~y2a!3, ~C15!

which satisfies the equation

d2I ~x!

dx2
1
dV

dx

dI~x!

dx
50 ~C16!

with

dV

dx
5V8~a!1V9~a!~x2a!1 1

2 V-~a!~x2a!2.

~C17!

On changing the variable by

z5SV-~a!

2 D 1/3Fx2a1
V9~a!

V-~a!G ~C18!

and letting

a5S 2

V-~a! D
1/3F @V9~a!#2

2V-~a!
2V8~a!G ~C19!

we obtain the equation

d2I ~z!

dz2
1~z22a!

dI~z!

dz
50 ~C20!

for which the solution is the incomplete Airy integral@17#
defined as

Ai ~z,a!5E
0

z

e2y3/31aydy. ~C21!

The integralI (x) is then given as

I ~x!5Ai ~z,a!e2V~a!. ~C22!

As above, we expandU(x) up to third order:

U~x!.U~a!1
1

3!
U-~a!~x2a!3, ~C23!

where
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U-~a!52
122a

a2~12a!2
,0 ~C24!

to obtain

t.
N

a~12a!
E

a

g

Ai ~z,a!e2~1/3!!NuU-~a!u~x2a!3dx.

~C25!
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